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1 Introduction

Given two matrices A ∈ RM×N,B ∈ RP×N, we are interested in the product between A and the transpose of B
(A · BT). This product structure often arises naturally. For example (see below) with SVD : A = UΣ ·VT.

The standard matrix multiplication formula says that each element of the product matrix is an inner product as
the product between the appropriate line from the �rst matrix and column from the second matrix.

For U ∈ RM×N,V ∈ RN×P: ([1]: we need column vectors to write the inner product)

(U ·V)ij =

N∑
k=1

UikVkj
[1]
=

N∑
k=1

(UT)kiVkj =
〈
(UT):i,V:j

〉
= ((UT):i)

TV:j = Ui:V:j ∀ i ∈ [[M]], j ∈ [[P]]

In our case (U← A and V← BT � see �gure 1(left)):

(A · BT)ij =
〈
(AT):i, (B

T):j
〉
= Ai:(B

T):j ∀ i ∈ [[M]], j ∈ [[P]] (1)
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Figure 1: Two views of matrix multiplication. (left) Standard view where every element of the product is an inner
product. (right) Matrix slicing where each slice is a 1-rank matrix produced from the duplication of columns of A

However, an alternative reading (see �gure 1(right)) given by the proposition below also shows useful.

Proposition 1 (Matrix slicing). Given two matrices A ∈ RM×N,B ∈ RP×N, the product matrix A · BT ∈ RM×P is
such that

A · BT =

N∑
k=1

A:k(B
T)k:

Proof. Given k ∈ [[N]], call Ck ∈ RM×P the matrix such that

(Sk)ij = AikBjk ∀ i ∈ [[M]], j ∈ [[P]]

From (1), clearly

(A · BT)ij =

N∑
k=1

(Sk)ij ⇔ A · BT =

N∑
k=1

Sk (2)
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Now, if (Sk)ij = AikBjk then
Sk = A:k(B:k)

T ⇒ Sk = A:k

(M× 1)

(BT)k:

(1× P)

As a result, from (2)

A · BT =

N∑
k=1

Sk =

N∑
k=1

A:k(B
T)k:

�

Note. Note that Sk is a 1-rank matrix since all columns of Sk are multiples of the kth column of A

(Sk):i = A:k(B
T)ki = BikA:k

Hence A ·BT is a sum (superimposition) of 1-rank matrices Sk (slices). The rank of A ·BT will therefore be determined
(upper-bounded) by the rank of A.

2 Application to covariance matrix computation

Given X ∈ RD×N a matrix formed out N of D-dimensional samples. The covariance matrix Σ of data X is a D×D
matrix such that

Σij =
1

N

N∑
k=1

(Xik −Xi)(Xjk −Xj) ∀ i, j ∈ [[D]] (3)

where

X =
1

N

N∑
k=1

X:k =
1

N
X11N and 11N is the N-dimensional vector of all ones

If we center the data, i.e we remove its mean to every line (feature), we get

X← X−X11TN = X · (IdN −
1

N
11N11TN) so that X =

1

N
X11N = 0D (prove)

Note. Matrix CN = IdN − 1
N
11N11TN is known as the centering matrix (of size N).

Exercise 1. Prove that CN is symmetric and idempotent (i.e CT
N = CN and CNCN = CN). Hint: simply develop.

Assume that the data is centered, we can replace (3) by:

Σij =
1

N

N∑
k=1

XikXjk =
1

N

N∑
k=1

Xik(X
T)kj

Given k ∈ [[N]], let Sk ∈ RD×D be such that Sk = X:k(X
T)k:. Then, clearly, (Sk)ij = Xik(X

T)kj So that,

Σij =
1

N

N∑
k=1

(Sk)ij ⇔ Σ =
1

N

N∑
k=1

Sk =
1

N

N∑
k=1

X:k(X
T)k:

By Proposition 1, for a centered matrix X:

Σ =
1

N
XXT

Note. The following properties can be derived:
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1. Writing Σ = 1
N

∑N
k=1 Sk (i.e that Σ is the average of slices Sk) corresponds to the matrix version of the König-

Huygens theorem saying that Var(X) = IE[X2] − (IEX)2. Since X is centered, IEX = 0 and we have Var(X) = IE[X2],
whose matrix-equivalent is

Σ =
1

N

N∑
k=1

X:k(X
T)k:

2. Should X not be centered, then

Σ =
1

N
X(Id− 1111T)(X(Id− 1111T))T =

1

N
XCNXT

3 Application to Singular Value Decomposition and low rank models

For any matrix A ∈ RM×N there exist U ∈ RM×M, Σ ∈ RM×N (�diagonal�), V ∈ RN×N such that A = UΣVT.

Note. By de�nition:

1. U and V are orthogonal matrices and of rank M and N, respectively

2. If M = N, then we can consider that V = U and obtain the classical eigensystem A = UΣUT

Rewriting A = UΣ.VT, Proposition 1 applies:

A = UΣ.VT =

N∑
k=1

(UΣ):k(V
T)k:

Now, if M > N, due to the structure of Σ (diagonal padded with zero-rows) we have

(UΣ):k = σkU:k ⇒ (UΣ):k(V
T)k: = σkU:k(V

T)k: for k ∈ [[N]]

Here again, slice Sk = U:k(V
T)k: is a 1-rank matrix.

UΣVT =

N∑
k=1

σkU:k(V
T)k: =

N∑
k=1

σkSk

Hence, the number of non-zero singular values (resp. eigen values if M = N) provides the rank of matrix A.
IfM 6 N, columnsM+ 1, · · · ,N of Σ are zero-padding so that columnsM+ 1, · · · ,N of UΣ will also be zero. We

therefore similarly get the result that the number of non-zero singular values (resp. eigen values if M = N) provides
the rank of matrix A.

Note. The same applies considering that

A = U · (VΣT)T (prove)
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