Homogeneization: Affine to Linear setup

S. Marchand-Maillet

Computer Science – University of Geneva

1 Homogeneization of variables

It is frequent to face a affine expression of variables of the form

$$w_0 + \sum_{i=1}^{D} w_i \mathbf{x}_{[i]} = 0 \qquad \mathbf{x} \in \mathbb{R}^D$$
 (1)

A major example is linear classification where $\{w_i\}_{i=1}^D$ represent the parameters of a separating hyperplane and w_0 is the bias. The same appears in linear regression or optimisation of the weights of a artificial neuron.

Equation (1) can be rewritten in vector form as $\mathbf{w}_0 + \mathbf{w}^\mathsf{T} \mathbf{x} = 0$ ($\mathbf{w}, \mathbf{x} \in \mathbb{R}^D$) but the bias is not well integrated and this form is still not easy to manipulate. Instead one can define homogeneous variables $\mathbf{x} \in \mathbb{R}^{D+1}$ and $\mathbf{w} \in \mathbb{R}^{D+1}$ so that equation (1) is equivalent to:

$$\begin{cases} \mathbf{\overline{w}}^{\mathsf{T}}\mathbf{\overline{x}} = 0 \\ \mathbf{\overline{x}}_{[0]} = 1 \\ \mathbf{\overline{x}}_{[\mathbf{i}]} = \mathbf{x}_{[\mathbf{i}]} \quad \mathbf{i} \in [1, D] \end{cases}$$
 (2)

Definition 1 (Homogeneous coordinates). Given variable $\mathbf{x} \in \mathbb{R}^D$, the homogeneous variable $\mathbf{x} \in \mathbb{R}^{D+1}$ has homogeneous coordinates

$$\left\{ \begin{array}{l} \mathbf{\ddot{x}}[\mathbf{0}] = 1 \\ \mathbf{\ddot{x}}[\mathbf{i}] = \mathbf{x}[\mathbf{i}] & \mathbf{i} \in [\![1,D]\!] \end{array} \right.$$

Geometrically, the homogeneization of variables immerses the Euclidean space \mathbb{R}^D into the space^(a) \mathbb{R}^{D+1} and characterizes the points satisfying equation (1) as a D-dimensional hyperplane being the interstection of two (D+1)-dimensional hyperplanes described by equation (2)

Example 1 (Illustration D = 2). Using classical affine algebra in the Euclidean plane we have

$$w_2 \mathbf{x}_{[2]} + w_1 \mathbf{x}_{[1]} + w_0 = 0 \quad \Rightarrow \quad \mathbf{x}_{[2]} = -\frac{w_1}{w_2} \mathbf{x}_{[1]} - \frac{w_0}{w_2}$$

so that the line $(\mathbb{L}) \subset \mathbb{R}^{D}$ in the Euclidean plane is

$$(\mathbb{L})$$
 : $\mathbf{x}_{[2]} = a\mathbf{x}_{[1]} + b$ where $a = -\frac{w_1}{w_2}$ and $b = -\frac{w_0}{w_2}$

In the homegeneous space (projective plane) we obtain two planes^(b) $\mathbb{P}, \mathbb{M} \subset \mathbb{R}^{D+1}$

$$\left\{ \begin{array}{l} (\mathbb{P}) \ : \ \overline{\mathbf{w}}_{[2]}\overline{\mathbf{x}}_{[2]} + \overline{\mathbf{w}}_{[1]}\overline{\mathbf{x}}_{[1]} + \overline{\mathbf{w}}_{[0]}\overline{\mathbf{x}}_{[0]} = \overline{\mathbf{w}}^\mathsf{T}\overline{\mathbf{x}} = 0 \\ (\mathbb{M}) \ : \ \overline{\mathbf{x}}_{[0]} = 1 \end{array} \right. \quad \text{so that} \quad \mathbb{L} = \mathbb{P} \cap \mathbb{M}$$

Note that

$$\mathbf{x} \in \mathbb{L} \quad \iff \quad \ddot{\mathbf{x}} \in \mathbb{P} \quad \iff \quad \ddot{\mathbf{w}}^\mathsf{T} \ddot{\mathbf{x}} = 0$$

so that vector \mathbf{w} is a normal to the hyperplane \mathbb{P} .

The homogeneous representation is therefore very useful in Machine Learning since we are interested in considering \mathbb{L} as a separating hyperplane. A data \mathbf{x}_i is therefore in one side or the other of this hyperplane depending on the angle $\angle(\mathbf{x}_i, \mathbf{w})$ between its homogeneized version \mathbf{x}_i and the normal \mathbf{w} to plane \mathbb{P}

$$\begin{cases}
\angle(\mathbf{x}_{i}, \mathbf{w}) < \frac{\pi}{2} & \Leftrightarrow \mathbf{x}_{i}^{\mathsf{T}} \mathbf{w} < 0 & \to \text{ class } 0 \\
\angle(\mathbf{x}_{i}, \mathbf{w}) > \frac{\pi}{2} & \Leftrightarrow \mathbf{x}_{i}^{\mathsf{T}} \mathbf{w} > 0 & \to \text{ class } 1
\end{cases}$$
(3)

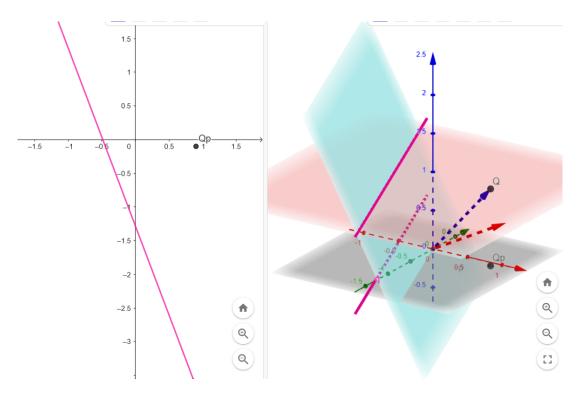


Figure 1: Homogeneization of variables (D = 2)

Note. The classification test in equation (3) is <u>not</u> equivalent to the test in non-homogeneous coordinates:

$$\begin{cases}
\angle(\mathbf{x}_{i}, \mathbf{w}) < \frac{\pi}{2} & \Leftrightarrow \mathbf{x}_{i}^{\mathsf{T}} \mathbf{w} < 0 & \neq \text{ class } 0 \\
\angle(\mathbf{x}_{i}, \mathbf{w}) > \frac{\pi}{2} & \Leftrightarrow \mathbf{x}_{i}^{\mathsf{T}} \mathbf{w} > 0 & \neq \text{ class } 1
\end{cases} \tag{4}$$

The above test rather tests whether the data is on one side or the other of a line parallel to the pink line in figure 1 (left - 2D setup) but going thru the (2D) origin.

Example 2 (Illustration D = 1). The above can also be illustrated in the case where D = 1, which corresponds to thresholding $\mathbf{x}_{[1]}$. Let $\mathbf{a} \in \mathbb{R}$ be the value of the threshold.

The homogeneous equivalent of equation $x_{[1]} = a$ reads

$$\ddot{\boldsymbol{w}}^\mathsf{T} \ddot{\boldsymbol{x}} = \ddot{\boldsymbol{w}}_{[1]} \ddot{\boldsymbol{x}}_{[1]} + \ddot{\boldsymbol{w}}_{[0]} \ddot{\boldsymbol{x}}_{[0]} = 0 \quad \Rightarrow \quad (\mathbb{P}) \; : \; \ddot{\boldsymbol{x}}_{[0]} = -\frac{\ddot{\boldsymbol{w}}_{[1]}}{\ddot{\boldsymbol{w}}_{[0]}} \ddot{\boldsymbol{x}}_{[1]} \quad (\mathbb{M}) \; : \; \ddot{\boldsymbol{x}}_{[0]} = 1$$

and

$$\mathbb{L} = \mathbb{P} \cap \mathbb{M} \quad \Rightarrow \quad (\mathbb{L}) \; : \; \pmb{x}_{[1]} = \alpha \quad \Rightarrow \quad \alpha = -\frac{\overline{\pmb{w}}_{[0]}}{\overline{\pmb{w}}_{[1]}}$$

Figure 2: Homogeneization of variables (D=1) - left as exercise until filled by the author

 $^{^{(}a)}$ called projective plane if D=2