Neural networks and the backpropagation algorithm

S. Marchand-Maillet

Computer Science — University of Geneva

1 introduction

Given a function f: RP — RY, we wish to approximate (regress) it from training data X x Y = {(xi,y;)}}, (where
y; = f(xi)) using a mapping
do: RP — R4
xi = dolxi)

parameterized with parameters 0 (using notation from statistics).

In machine learning terms, f is the mapping that underlies the phenomenon we wish to learn and is unknown. We
can access annotated samples X x Y = {(xi,y;)}}\, and we wish to train a learner ¢ by adjusting its parameters 0
to minimize a loss function £(X x Y;0).

Here, we present ¢g(-) as a feedforward neural network taking D input values and producing d output values. We
will further consider the practical case of the squared loss:

N d
£(X x ¥; 0) an)e xi) — yil3 = —NZZ o (X)) — Y)2 (1)

Note. When the label y; is of dimension d = 1, the squared loss reduces to the classical

N N
L(XxY;0) = Z = Zd)e xi) — yi)?

A Neural Network model is a Directed Acyclic Graph (DAG) of units (referred to as “neurons”) organized in layers
(see figure 2 for an example). In the particular case of a feedforward network, conventionally, connections between
neurons only exist from one layer to the next.

1.1 “Neuron” model and notation

A generic neuron is located at layer 1 € [L] in a network of L layers and takes its inputs from the outputs of other
neurons. To ease the presentation and because this is the dominant “feedforward” model, we assume that the neuron
takes its inputs from the output of the neurons in the previous layer L — 1 (see figure 1)),

A neuron (1, k) located at index k € [N{] of layer 1 € [L] comprising N neurons:

1. receives its inputs from weighted connections with weights w}k
2. aggregates these inputs into a linear sum into its activation a}, = Z}\I‘O ! w]kc])

3. outputs the result of its activation function @k (-) applied to its activation: ¢t = @k (ak)

Note that in this model, the weights are attached to the neuron itself. They form the adjustable parameters of the

model
0 ={wj | jeNi1],keNJ,1e L]}

The hyperparameters of the model concern its structure and choice of activation functions, i.e L > 0, {N 1}1L:1 and

{‘Pk}llj{’ 1

Also following the feedforward structure, we fix the following boundary conditions for the model:

43% = Xilk] No =D (input)
do(xi) =" (xi) NL=d (output)

(8 A more generic formulation using the notation for graph adjacency is left as exercise.

1 INTRODUCTION 2

Layer 1

Index k d)]l 7

q)lfl wl
Ny N1k

Figure 1: A generic neuron in a feedforward network, taking input from the previous layer

where the notation ¢}, (x;) indicates the output of neuron (1,k) when the network takes x; as input. al(x;) is defined
similarly.

Using variable homogenization, it is also customary to consider that ¢} = 1 where a bias (hence w}) should be
introduced in order to escape from the pure linear activation.

Note. The logistic neuron defines its activation functions as the logistic function:

1
Loy
ox(z) = 1rez

vk € [N V1 € [L]

The present study is more general. It is left as exercise to model the logistic regression as a neural network.

As a result we have the following system of equations:

o = @i (ag) vk e [Ny Vle[Ll

Ny
ap =) whoi! Vke [N Ve L]

j=0
Y =xim Vk € [D]
dy =1 vie[L—1]
do(xi) = bL(xi) vk e [d] Vie [N]

N d
L(X xY;0) = QL Z D (do(xi)ia — y;ix)?

to adjust the parameters of the model 6 = {wjlk [j€ N1, ke Ny, le [[U]}.

Note. In this document, the assumption is that of a DAG. The connectivity may be more general than “feedforward”
(e.g with “skip-connections” connecting layers that are not successive). Only the notation would change.

1.2 Training the network using the backpropagation algorithm

The aim of training is the minimization of the approximation (regression, prediction) error (the “loss”):

0" = argmin £L(X x Y; 0)
0cO®

As indicated, the parameters of the models are the weights 6 = {W}k}LkJ'

The algorithm used for training is the gradient descent over the error function to adjust the parameters. In other
words, the simple structure of the algorithm is as shown in algorithm 1.

The key element of the algorithm is therefore the computation of all values of

oL

1
aw).k

Vje N1l ke [N, e [L]

as the variation of the loss against the modification of weights w}k.

S. Marchand-Maillet — 2024 Topics in Al 2

http://viper.unige.ch/stephane

1 INTRODUCTION 3

Algorithm 1 The base structure of the backpropagation algorithm

1: procedure BACKPROPAGATION(X,Y)

2 w}k() random() Vj € [N1_1],k € [N{],1 € [L] > Initialize random weights
3 for iteration t =1 until t =T do > or until convergence
4 for i € [N] do > Gradient iteration for data x;
5 for j € [N_1], k € [N{], le[[L]] do

6 w}k(U w)k(t D Nn aw (x1) > 1 > 0 is the gradient step (learning rate)

The name “backpropagation” for this algorithm comes from the realization that when the network has more than
one layer (L > 1), there is no direct access to 57t The chain rule should be used and the gradient propagated back

J
(“backpropagated”) from the end of the network towards its input.
In the specific case of the squared loss, given p € [N1_1], r € [N{], m € [L] we write

awm o Z Z aadjvem) (o (xi) i — yix)

i=1 k=1

where ¢kl is the k'™ component function of ¢g(-). By definition, ¢pglxl(xi) = L (xi) so we can write

0 [x] (x;) = Loty (x) U [M)‘E Oay } (xi)

m - m L m
owgy QI da; OwpL

[1]: using the chain rule for derivation.
Now,

. 2
owm 0ap Oown (2)
Ny 1-1
day Z L 99
3
oW, = Wik oW (3)

With the following particular cases:

Nmfl
aa_‘;n _ 0 mygm—1| _ ym—1
owm own j_ZO Wir @3 P
and for p =0,
aa;n m—1 _
Or

or,if k #ror 1 <l<m, wg is not a involved in the computation of al and

aalk 0 R 1 4 1-1
aw]rpr; = awg}r Z ijq)i =0 (4)

finally, if m =1 and p € [D],

dal 0 o
Sl (X =5 Zwﬂcp (x1) = by (x1) =xi[p]
pr

pr

This set of equations (in particular (3) and (2)) creates a recursive chain of computation for derivatives, starting from
layer L backpropagating values towards the first (input) layer. Note that equation (4) confirms that the backtracking

L
of derivation of ai&‘; concern only paths in the network containing wpt and stopping at layer m (equation (4)). We

can therefore define the recursive algorithm 2 where the highlighted functlons ensure the recursive backpropagation.

Clearly, the weights {W}k}jkt may be stored in 3D arrays. Similarly, the values for {a} (xi)}iki and {pL (xi)}ik may
be stored using matrices (for every x;) or 3D arrays. Algebraic operations (addition, multiplication and more) can be
defined over these so-called “tensors” and accelerated using GPUs (or TPUs).

S. Marchand-Maillet — 2024 Topics in Al 3

http://viper.unige.ch/stephane

1 INTRODUCTION 4

Algorithm 2 The recursive backpropagation algorithm

1: function aavij;,%r (xi) > Use chain rule since ¢} = @i (a})
2: return aa‘g{:: . aavs;i. (x41)

3: .

4: function 21;{ (x1) > Activation function
5: Depends on 1, k and the definition of ¢} (z)

6: e.g if pL(z) =z return 1

7 e.g if pL(z) = z? return 2al (x;)

s egif @L(z) = L return @(ak(x;))(1 — o(ak(x;))

9: ol
10: function 3 V:lé“r (xi) > Activation
11: if 1 > m then return ZN‘*I wl L}H(X-)

j=0 jk own 1

12: if l =m then
13: if kK =r then return cb;“_l(xi)

14: else return 0

15: if 1 =1 then return x;[p]

16:

17: function as\ﬁk (x1)

18: return Y &, %(Xi) (dr(xi) —yi)

19:
20: procedure BACKPROPAGATION(X,Y)
21: w};fo] +random() Vj € [N 1],k € [N, 1 € [L] > Initialize random weights
22: for iteration t =1 until t =T do > or until convergence
23: for i € [N] do
24: Forward pass computes and stores values for al(xi) and ¢} (xi) Vk,1 > Forward pass for x;
25: for] S [[lel]], k e [[N],]], 1€ [L] do
26: w}{ft) — w}iftfl) — %n ag\ﬁk (xi) > 1 > 0 is the gradient step (learning rate)

S. Marchand-Maillet — 2024 Topics in Al 4

http://viper.unige.ch/stephane

1 INTRODUCTION)

1.3 Example
1.3.1 Quadratic regression
Given X x Y, a quadratic regression considers the squared loss and a learner of the quadratic family:
o (xi)i = (Wixi)® + wiixi + wglp (5)

o may be represented with a 3-layer feedforward network with Ny = 2, o1(z) = z, @i(z) = 2%, 93(z) = z, as
represented in figure 2.

1| xi0 'z Q do(xi)]
I

Figure 2: A neural network performing quadratic regression (D =2, d = 1). Square nodes simply output their values.

The green path shows the chain rule used for computing a?/\ﬁ
21

Following our notation, we obtain for the case D =2, d = 1:

1 1

ap aj
¢(_)_2('1 1. 1y o 2 1 1. 1. .12 6
o (xi) = Wi (woy + wipXiltl + WaiXi[2]) + Wiy (Wog + WigXilt] + WasXi[2]) (6)
=wi o1(aj) + w3 @3(a3) (7)
Considering a squared loss, one obtains
N
0L 1 0de
=) 1 (xi)(delxi) —yi)
1
owj N ; Wy
and
ad)e 2 ad)e 2 ad)e 2
—(x;) =w — (X)) = WXl (Xi) = Wi Xq[2]
aWél(1) 11 aW}l(l) 11M™ awél(1) 11M™
0do 0do
W(Xi) = 2w3, (Wgy + WipXilt] + WioXi [2]) W(Xi) = 2w X3 [1](Who + WipXil1] + WioXil2])
02 12
0 0
avi)ile(xi) = 2W3 X [2](Wgg + WoXil1] + WayXi[2]) avd\;e (x1) = Wy + Wi Xilt] + W X (2]
22 11
0
I d)ge (1) = (Wy + WigXil1] + WiyXi(2])?
W31

where one can see that the development of the chain rule follows paths according to equations derived in section 1.2.
For example (see figure 2):

0de o¢p? 09a? 3Pl 0Oal
aw%l (xi) — 87(1% . ﬁ . aia%l . awgl (xi) =1 'W%I .1 - Xil2]

These are the only non-zero terms from the chain

N
ad)e(.):ai)%.zl La%.ai)il.aajl (x1)
owl, Y a2 P Odpj daj dwj | T

9a; _ by equation (4).

ows,

since

S. Marchand-Maillet — 2024 Topics in Al 5

http://viper.unige.ch/stephane

1 INTRODUCTION

Note. Developing equation (5) for this case, one can see that the neural model is over-specified: many combinations
of weights lead to the same solution. To fix a unique solution, one can e.g fix and not update (clamp) wi,, w3, and

2
W51,

S. Marchand-Maillet — 2024 Topics in Al

http://viper.unige.ch/stephane

	introduction
	``Neuron'' model and notation
	Training the network using the backpropagation algorithm
	Example
	Quadratic regression

