
Neural networks and the backpropagation algorithm

S. Marchand-Maillet

Computer Science – University of Geneva

1 introduction
Given a function f : RD → R

d, we wish to approximate (regress) it from training data X × Y = {(xi,yi)}
N
i=1 (where

yi = f(xi)) using a mapping
φθ : R

D → R
d

xi 7→ φθ(xi)

parameterized with parameters θ (using notation from statistics).
In machine learning terms, f is the mapping that underlies the phenomenon we wish to learn and is unknown. We

can access annotated samples X× Y = {(xi,yi)}
N
i=1 and we wish to train a learner φθ by adjusting its parameters θ

to minimize a loss function L(X× Y;θ).
Here, we present φθ(·) as a feedforward neural network taking D input values and producing d output values. We

will further consider the practical case of the squared loss:

L(X× Y;θ) =
1

2

1

N

N∑
i=1

‖φθ(xi) − yi‖22 =
1

2N

N∑
i=1

d∑
k=1

(φθ(xi)[k] − yi[k])
2 (1)

Note. When the label yi is of dimension d = 1, the squared loss reduces to the classical

L(X× Y;θ) =
1

2N

N∑
i=1

(ŷi − yi)
2 =

1

2N

N∑
i=1

(φθ(xi) − yi)
2

A Neural Network model is a Directed Acyclic Graph (DAG) of units (referred to as “neurons”) organized in layers
(see figure 2 for an example). In the particular case of a feedforward network, conventionally, connections between
neurons only exist from one layer to the next.

1.1 “Neuron” model and notation
A generic neuron is located at layer l ∈ [[L]] in a network of L layers and takes its inputs from the outputs of other
neurons. To ease the presentation and because this is the dominant “feedforward” model, we assume that the neuron
takes its inputs from the output of the neurons in the previous layer l− 1 (see figure 1)(a).

A neuron (l,k) located at index k ∈ [[Nl]] of layer l ∈ [[L]] comprising Nl neurons:

1. receives its inputs from weighted connections with weights wljk

2. aggregates these inputs into a linear sum into its activation alk =
∑Nl−1

j=0 wljkφ
l−1
k

3. outputs the result of its activation function ϕlk(·) applied to its activation: φlk = ϕlk(a
l
k)

Note that in this model, the weights are attached to the neuron itself. They form the adjustable parameters of the
model

θ = {wljk || j ∈ [[Nl−1]],k ∈ [[Nl]], l ∈ [[L]]}

The hyperparameters of the model concern its structure and choice of activation functions, i.e L > 0, {Nl}Ll=1 and
{ϕlk}

Nl,L
k,l=1.
Also following the feedforward structure, we fix the following boundary conditions for the model:{

φ0
k = xi[k] N0 = D (input)
φθ(xi) = φ

L(xi) NL = d (output)

(a)A more generic formulation using the notation for graph adjacency is left as exercise.

1 INTRODUCTION 2

wl0k

wlNl−1k

ϕlkalk
φl−1
j

φl−1
0

wljk φlk

φl−1
Nl−1

Index k

Layer l

Figure 1: A generic neuron in a feedforward network, taking input from the previous layer

where the notation φlk(xi) indicates the output of neuron (l,k) when the network takes xi as input. alk(xi) is defined
similarly.

Using variable homogenization, it is also customary to consider that φl0 = 1 where a bias (hence wl0) should be
introduced in order to escape from the pure linear activation.

Note. The logistic neuron defines its activation functions as the logistic function:

ϕlk(z) =
1

1+ e−z
∀k ∈ [[Nl]] ∀l ∈ [[L]]

The present study is more general. It is left as exercise to model the logistic regression as a neural network.

As a result we have the following system of equations:

φlk = ϕlk(a
l
k) ∀k ∈ [[Nl]] ∀l ∈ [[L]]

alk =

Nl−1∑
j=0

wljkφ
l−1
j ∀k ∈ [[Nl]] ∀l ∈ [[L]]

φ0
k = xi[k] ∀k ∈ [[D]]

φl0 = 1 ∀l ∈ [[L− 1]]

φθ(xi)[k] = φ
L
k(xi) ∀k ∈ [[d]] ∀i ∈ [[N]]

L(X× Y;θ) =
1

2N

N∑
i=1

d∑
k=1

(φθ(xi)[k] − yi[k])
2

to adjust the parameters of the model θ =
{
wljk || j ∈ [[Nl−1]],k ∈ [[Nl]], l ∈ [[L]]

}
.

Note. In this document, the assumption is that of a DAG. The connectivity may be more general than “feedforward”
(e.g with “skip-connections” connecting layers that are not successive). Only the notation would change.

1.2 Training the network using the backpropagation algorithm
The aim of training is the minimization of the approximation (regression, prediction) error (the “loss”):

θ∗ = argmin
θ∈Θ

L(X× Y;θ)

As indicated, the parameters of the models are the weights θ = {wljk}j,k,l.
The algorithm used for training is the gradient descent over the error function to adjust the parameters. In other

words, the simple structure of the algorithm is as shown in algorithm 1.
The key element of the algorithm is therefore the computation of all values of

∂L

∂wljk
∀j ∈ [[Nl−1]],k ∈ [[Nl]], l ∈ [[L]]

as the variation of the loss against the modification of weights wljk.

S. Marchand-Maillet – 2024 Topics in AI 2

http://viper.unige.ch/stephane

1 INTRODUCTION 3

Algorithm 1 The base structure of the backpropagation algorithm
1: procedure Backpropagation(X,Y)
2: w

l,(0)
jk ← random() ∀j ∈ [[Nl−1]],k ∈ [[Nl]], l ∈ [[L]] . Initialize random weights

3: for iteration t = 1 until t = T do . or until convergence
4: for i ∈ [[N]] do . Gradient iteration for data xi
5: for j ∈ [[Nl−1]], k ∈ [[Nl]], l ∈ [[L]] do
6: w

l,(t)
jk ← w

l,(t−1)
jk − 1

N
η ∂L
∂wl

jk

(xi) . η > 0 is the gradient step (learning rate)

The name “backpropagation” for this algorithm comes from the realization that when the network has more than
one layer (L > 1), there is no direct access to ∂L

∂wl
jk

. The chain rule should be used and the gradient propagated back
(“backpropagated”) from the end of the network towards its input.

In the specific case of the squared loss, given p ∈ [[Nl−1]], r ∈ [[Nl]], m ∈ [[L]] we write

∂L

∂wmpr
=

1

N

N∑
i=1

d∑
k=1

∂φθ[k]

∂wmpr
(xi) (φθ(xi)[k] − yi[k])

where φθ[k] is the kth component function of φθ(·). By definition, φθ[k](xi) = φ
L
k(xi) so we can write

∂φθ[k]

∂wmpr
(xi) =

∂φLk
∂wmpr

(xi)
[1]
=

[
∂φLk
∂aLk

· ∂a
L
k

∂wmpr

]
(xi)

[1]: using the chain rule for derivation.
Now,

∂φlk
∂wmpr

=
∂ϕlk
∂alk

· ∂a
l
k

∂wmpr
(2)

∂alk
∂wmpr

=

Nl−1∑
j=0

wljk
∂φl−1

j

∂wmpr
(3)

⇒ ∂φlk
∂wmpr

=
∂ϕlk
∂alk

·
Nl−1∑
j=0

wljk
∂φl−1

j

∂wmpr

With the following particular cases:

∂amr
∂wmpr

=
∂

∂wmpr

Nm−1∑
j=0

wmjrφ
m−1
j

 = φm−1
p

and for p = 0,
∂amr
∂wm0r

= φm−1
0 = 1 ∀m ∈ [[L]]

or, if k 6= r or 1 < l < m, wmpr is not a involved in the computation of alk and

∂alk
∂wmpr

=
∂

∂wmpr

Nl−1∑
j=0

wljkφ
l−1
j

 = 0 (4)

finally, if m = 1 and p ∈ [[D]],

∂a1r
∂w1

pr

(xi) =
∂

∂w1
pr

N0∑
j=0

w1
jrφ

0
j

 (xi) = φ
0
p(xi) = xi[p]

This set of equations (in particular (3) and (2)) creates a recursive chain of computation for derivatives, starting from
layer L backpropagating values towards the first (input) layer. Note that equation (4) confirms that the backtracking
of derivation of ∂al

k

∂wm
pr

concern only paths in the network containing wmpr and stopping at layer m (equation (4)). We
can therefore define the recursive algorithm 2 where the highlighted functions ensure the recursive backpropagation.

Clearly, the weights {wljk}jkl may be stored in 3D arrays. Similarly, the values for {alk(xi)}ikl and {φlk(xi)}ikl may
be stored using matrices (for every xi) or 3D arrays. Algebraic operations (addition, multiplication and more) can be
defined over these so-called “tensors” and accelerated using GPUs (or TPUs).

S. Marchand-Maillet – 2024 Topics in AI 3

http://viper.unige.ch/stephane

1 INTRODUCTION 4

Algorithm 2 The recursive backpropagation algorithm

1: function ∂φl
k

∂wm
pr
(xi) . Use chain rule since φlk = ϕlk(a

l
k)

2: return ∂ϕl
k

∂al
k

· ∂a
l
k

∂wm
pr
(xi)

3:
4: function ∂ϕl

k

∂al
k

(xi) . Activation function
5: Depends on l , k and the definition of ϕlk(z)
6: e.g if ϕlk(z) = z return 1
7: e.g if ϕlk(z) = z

2 return 2alk(xi)
8: e.g if ϕlk(z) =

1
1+e−z return ϕ(alk(xi))(1−ϕ(a

l
k(xi)))

9:
10: function ∂al

k

∂wm
pr
(xi) . Activation

11: if l > m then return
∑Nl−1

j=0 wljk
∂φl−1

j

∂wm
pr

(xi)

12: if l = m then
13: if k = r then return φm−1

p (xi)
14: else return 0
15: if l = 1 then return xi[p]
16:
17: function ∂L

∂wl
jk

(xi)

18: return
∑d
r=1

∂φL
r

∂wl
jk

(xi)
(
φLr (xi) − yi[k]

)
19:
20: procedure Backpropagation(X,Y)
21: w

l,(0)
jk ← random() ∀j ∈ [[Nl−1]],k ∈ [[Nl]], l ∈ [[L]] . Initialize random weights

22: for iteration t = 1 until t = T do . or until convergence
23: for i ∈ [[N]] do
24: Forward pass computes and stores values for alk(xi) and φ

l
k(xi) ∀k, l . Forward pass for xi

25: for j ∈ [[Nl−1]], k ∈ [[Nl]], l ∈ [[L]] do
26: w

l,(t)
jk ← w

l,(t−1)
jk − 1

N
η ∂L
∂wl

jk

(xi) . η > 0 is the gradient step (learning rate)

S. Marchand-Maillet – 2024 Topics in AI 4

http://viper.unige.ch/stephane

1 INTRODUCTION 5

1.3 Example
1.3.1 Quadratic regression

Given X× Y, a quadratic regression considers the squared loss and a learner of the quadratic family:

φθ(xi)[k] = (ωT
2kxi)

2 +ωT
1kxi +ω

T
0k11D (5)

φθ may be represented with a 3-layer feedforward network with N1 = 2, ϕ1
1(z) = z, ϕ1

2(z) = z2, ϕ2
2(z) = z, as

represented in figure 2.

0 1 2

0

1

2

z

z2xi[2]

1

xi[1]

w1
21

φθ(xi)[1]z

Figure 2: A neural network performing quadratic regression (D = 2, d = 1). Square nodes simply output their values.
The green path shows the chain rule used for computing ∂L

∂w1
21

Following our notation, we obtain for the case D = 2, d = 1:

φθ(xi) = w
2
11(

a1
1

w1
01 +w

1
11xi[1] +w

1
21xi[2]) +w

2
21(

a1
2

w1
02 +w

1
12xi[1] +w

1
22xi[2])

2 (6)

= w2
11ϕ

1
1(a

1
1) +w

2
21ϕ

1
2(a

1
2) (7)

Considering a squared loss, one obtains

∂L

∂wjk
=

1

N

N∑
i=1

∂φθ

∂wljk
(xi)(φθ(xi) − yi)

and
∂φθ

∂w1
01

(xi) = w
2
11

∂φθ

∂w1
11

(xi) = w
2
11xi[1]

∂φθ

∂w1
21

(xi) = w
2
11xi[2]

∂φθ

∂w1
02

(xi) = 2w2
21(w

1
02 +w

1
12xi[1] +w

1
22xi[2])

∂φθ

∂w1
12

(xi) = 2w2
21xi[1](w

1
02 +w

1
12xi[1] +w

1
22xi[2])

∂φθ

∂w1
22

(xi) = 2w2
21xi[2](w

1
02 +w

1
12xi[1] +w

1
22xi[2])

∂φθ

∂w2
11

(xi) = w
1
01 +w

1
11xi[1] +w

1
21xi[2]

∂φθ

∂w2
21

(xi) = (w1
02 +w

1
12xi[1] +w

1
22xi[2])

2

where one can see that the development of the chain rule follows paths according to equations derived in section 1.2.
For example (see figure 2):

∂φθ

∂w1
21

(xi) =
∂φ2

1

∂a21
· ∂a

2
1

∂φ1
1

· ∂φ
1
1

∂a11
· ∂a

1
1

∂w1
21

(xi) = 1 ·w2
11 · 1 · xi[2]

These are the only non-zero terms from the chain

∂φθ

∂w1
21

(xi) =
∂φ2

1

∂a21
·
N1∑
j=0

[
∂a21
∂φ1

j

·
∂φ1

j

∂a1j
·
∂a1j

∂w1
21

]
(xi)

since ∂a1
2

∂w1
21

= 0 by equation (4).

S. Marchand-Maillet – 2024 Topics in AI 5

http://viper.unige.ch/stephane

1 INTRODUCTION 6

Note. Developing equation (5) for this case, one can see that the neural model is over-specified: many combinations
of weights lead to the same solution. To fix a unique solution, one can e.g fix and not update (clamp) w1

02, w2
11 and

w2
21.

S. Marchand-Maillet – 2024 Topics in AI 6

http://viper.unige.ch/stephane

	introduction
	``Neuron'' model and notation
	Training the network using the backpropagation algorithm
	Example
	Quadratic regression

