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1 Introduction

Linear Discrimination for classification in Machine Learning comes as a conjunction of several factors [2]:
1. The optimality of the Bayes classifier
2. The assumption of Gaussian models for class densities
3. The geometry of Gaussian models

which we detail next.

2 Bayesian theory for classification

Given a labeled information space Qx x Qy, where Qy C RP is the data space and Qy C R is the label space and
where each x € Qy is associated with a label yx € Qy, we assume a (generally unknown) joint probability distribution
p(X,Y) for the related random variables X € Qx and Y € Qy. Now classification is defined as the map (“the classifier”,
later “the learner”) ¢ € IF:
d: Qy — _O.y
x = ox)=Y

which maps a data x € Qy onto a (predicted) label § € Qy. TF is a given family of functions.

The evaluation of a classifier ¢ is defined by a loss function £(Qx,Qy,d) € R*. The loss function typically
measures the ability of the classifier to map data x onto the true label yy, e.g:

L%, Yx, §) = L (x) 2y,

Definition 1 (Risk). The risk of classifier ¢ € IF is its expected loss over the information space:

R(¢)°‘=€fEx,YL(Qx,Qy,¢)=L Ly Ol dx)ldy)

Definition 2 (Bayes classifier). We define the Bayes classifier (as a tribute to its conditional structure) the map that
affects the most likely label y € Qy to any given data x € Qx:

$p(x) = argmax pyjx (Y = ylX =x)

yeQy

It is then possible to prove

Theorem 1. Bayes classifier is an optimal classifier with minimal risk

¢p = argmin R(p) where F ={d: Qyx — Qy}
dEF
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Proof. (that Bayes classifier is optimal) TBC O

The optimality of the Bayes classifier motivates the analysis of the distribution py)x(Y = y|X =x). Of course in
general pyjx is unknown so that the Bayes classifier cannot operate directly. As a result, several strategies for learning
a (empirical) surrogate for the Bayes classifier have been proposed.

These constructions for learning essentially rely on the use of Bayes theorem to emerge the possibility to use
empirical knowledge about the information space Qx x Qy to set the structure of the classifier. In other words, noting
that

pox(Y =YX =X) = Zpay (X = XY =y)pv(Y =y)  where z:px(X):JQ v (X =XIY = y)py(Y = y)u(dy)

one can address the following terms:

e pxy (X =x|Y =1y): label-conditional (class-conditional) density. This is the density of all data x receiving label
y

e py(Y =vy) label density. This is the density of label y in label space Qy

e px(X) data density. This is the density of the data. As evident from above it is used as a normalizer to
preserve IQxe. pyix(Y = y[X = x)u(dx)pu(dy) = 1. It is generally not estimated explicitly but implicitly via
normalization, which corresponds to using the law of total probabilities (sum rule over all labels).

Density ratios also circumvent the computation of the normalizer.

In other words, the data density over Q« is seen as a mixture of class-conditional densities:
X(0) = | pav(X = xI¥ = y)py (y)dy
Y

which in case of a discrete label space (y € Qy ={0,--- ,K—1}) becomes

K—1
px(x)= Y Py(Y=y)pxy(X=xY =y) =) mp(x)
yeQy k=0

which is the typical mixture model with class-conditional density px and mixture weight 7.

3 Gaussian model for class-conditional densities
One natural model for the class density (given label y) is the Gaussian model. The Gaussian distribution

1 1 Ty—1

_ —5 (=)' 27 (x—p)
N(X\u,Z) = (27I)D/2|Z|1/2 exp 2
considers a main prototype pu and a likelihood that decreases exponentially with the Malahanobis distance (shaped by
Y) from p. The Gaussian model can therefore be characterized by its 2 first centered moments p and X, others being
Zero.

The estimation of the class k parameters follows MLE classical estimates under Maximum Likelihood for Gaussian
models(® . Following MLE, the class mean 1, can be computed as the empirical mean of the class data. The covariance
matrix Xy can also be computed as MLE estimate. In other words,

N
1 1 N
Nk:Z[yi:k?] Hk:]\Tk Z Xi Zk:]\Tk Z (Xi—uk)(xi—lvlk)T ﬂk:Wk (1)

i=1 iyi=k iyi=k

The relationship between Gaussian models and log likelihood(® creates a direct link between probabilistic discrimina-
tion and its geometry.

3.1 Geometry of Gaussian models

Bayes classifier is a maximum likelihood classifier (Definition 2): it allocates the label y with highest likelihood to
data x. Classes (of labels y) will therefore compete over Q« for label allocation. As it turns out, the geometry of the
separating set can be studied in the binary case (K = 2) as follows.

(@ Maximum Likelihood Estimate (MLE) and the Gaussian model
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Proposition 1. Given yg,y; € Qy and p(X = x|Y = yx) = N(x|uy, Zx) (k = 0,1) then the separating set between
class yp and y;

e is linear if £y = X; (homoscedasticity)

e is quadratic otherwise (heteroscedasticity)

Class populations, as class priors (P(Y = k)) guide the location of the separating set with respect to class means.

Proof. TBC. See proof at (®). O

4 Discriminant Analysis

From the above, effective classifiers may be constructed and learned, based on an empirical estimation of their pa-
rameters [3]. In a discrete supervised classification setup, given X x Y = {(xi,yi)}}\, where x; € Qx C RP and
yi €Y={0,--- ,K—1} C Qy we seek to train a classifier

do: Qx — Y

x > dolx) =1y where ¢g € F and [ is a family of functions parameterized by ©

Note that classifier g maps data to a finite discrete set of labels Y although the above theory is deployed for continuous
labels (y € Qy C R) and is therefore also fit for a regression setup.

4.1 Binary case

Assume K = 2, we use Bayes classification theory to train a classifier discriminating 2 classes, each having a Gaussian
model:
PX=x[Y =0) =N(xlup,Zo) and p(X=x[Y =1) =N(x|u;, Z;)

Recall that
P(Y=k)=m ke{0,1}

Bayes classification therefore leads to check whether (Definition 2)
P(Y =0)pX=x[Y =0) >P(Y =1)pX=x[Y =1) ie moN(x[uy, o) > mN(x[uy, X;)
which can also be qualified using the log odd ratio:

— —xlY = N hx
P(Y =0)p(X =x[Y 0)>0 o logﬂo (xIug, 0)>0

BPY =DpX=xY=1) mN(xlu,, 1)

1

4.1.1 Linear Discriminant Analysis: LDA

Here, LDA consists in estimating separate means p, and p; and a unique covariance matrix X for all classes. While the
mean and mixture weight estimation follows equation (1), the shared covariance matrix is estimated as the weighted
average of individual class covariance matrices:

1
L= N(NozoJerZl) (2)
As mentioned above, classes with Gaussian conditional model and equal covariance matrices X are separated by a
linear set (hyperplane)(®.
It is easy to show that in the binary case, the separating hyperplane is orthogonal to the line joining the 2 means
(no, u,)® located closer to the largest class k € {0, 1} proportionally to 7.

4.1.2 Quadratic Discriminant Analysis: QDA

Again as shown from the geometry of Gaussian models, Gaussian class-conditional densities with individual covariance
matrices Xy show quadratic separating sets. Here, the estimation again follows MLE for p, and preserves individual
covariance matrices Xy.

Again, in the binary case, one can show that the separating set is “bent” around the mean of smallest covariance
norm® and “attracted” by the most populated class according to 7.

(b) Geometry of Gaussian models
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4.2 General case

In the general case of K > 2, equations (1) remain valid but there is no simple interpretation of the geometry of class
competition. For multiclass LDA, equation (2) becomes

5 Extension: Fisher criterion

The above technique emphasizes class separation. This is visible in the binary case where the separating hyperplane
is orthogonal to the line joining the two means. This would be called the between criterion in Fisher discrimination
theory [1]. This criterion is mirrored by the within criterion, using the direction of minimal variance within the class
as separating criterion. Fisher criterion proposes a trade-off between these two competing notions

. between criterion
class separation = argmax ——— —
direction Within criterion
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