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1 Introduction

Linear Discrimination for classi�cation in Machine Learning comes as a conjunction of several factors [2]:

1. The optimality of the Bayes classi�er

2. The assumption of Gaussian models for class densities

3. The geometry of Gaussian models

which we detail next.

2 Bayesian theory for classi�cation

Given a labeled information space ΩX ×ΩY, where ΩX ⊆ RD is the data space and ΩY ⊆ R is the label space and
where each x ∈ ΩX is associated with a label yx ∈ ΩY, we assume a (generally unknown) joint probability distribution
p(X,Y) for the related random variables X ∈ ΩX and Y ∈ ΩY. Now classi�cation is de�ned as the map (�the classi�er�,
later �the learner�) φ ∈ F:

φ : ΩX → ΩY

x 7→ φ(x) = ŷ

which maps a data x ∈ ΩX onto a (predicted) label ŷ ∈ ΩY. F is a given family of functions.
The evaluation of a classi�er φ is de�ned by a loss function L(ΩX,ΩY,φ) ∈ R+. The loss function typically

measures the ability of the classi�er to map data x onto the true label yx, e.g:

L(x,yx,φ) = 1φ(x) 6=yx

De�nition 1 (Risk). The risk of classi�er φ ∈ F is its expected loss over the information space:

R(φ)
def

= IEX,YL(ΩX,ΩY,φ) =

∫
ΩX×ΩY

L(x,yx,φ)µ(dx)µ(dy)

De�nition 2 (Bayes classi�er). We de�ne the Bayes classi�er (as a tribute to its conditional structure) the map that
a�ects the most likely label y ∈ ΩY to any given data x ∈ ΩX:

φB(x)
def

= argmax
y∈ΩY

pY|X(Y = y|X = x)

It is then possible to prove

Theorem 1. Bayes classi�er is an optimal classi�er with minimal risk

φB = argmin
φ∈F

R(φ) where F = {φ : ΩX → ΩY}
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Proof. (that Bayes classi�er is optimal) TBC �

The optimality of the Bayes classi�er motivates the analysis of the distribution pY|X(Y = y|X = x). Of course in
general pY|X is unknown so that the Bayes classi�er cannot operate directly. As a result, several strategies for learning
a (empirical) surrogate for the Bayes classi�er have been proposed.

These constructions for learning essentially rely on the use of Bayes theorem to emerge the possibility to use
empirical knowledge about the information space ΩX×ΩY to set the structure of the classi�er. In other words, noting
that

pY|X(Y = y|X = x) =
1

Z
pX|Y(X = x|Y = y)pY(Y = y) where Z = pX(X) =

∫
ΩY

pX|Y(X = x|Y = y)pY(Y = y)µ(dy)

one can address the following terms:

� pX|Y(X = x|Y = y): label-conditional (class-conditional) density. This is the density of all data x receiving label
y

� pY(Y = y) label density. This is the density of label y in label space ΩY

� pX(X) data density. This is the density of the data. As evident from above it is used as a normalizer to
preserve

∫
ΩX×ΩY

pY|X(Y = y|X = x)µ(dx)µ(dy) = 1. It is generally not estimated explicitly but implicitly via
normalization, which corresponds to using the law of total probabilities (sum rule over all labels).

Density ratios also circumvent the computation of the normalizer.

In other words, the data density over ΩX is seen as a mixture of class-conditional densities:

pX(x) =

∫
ΩY

pX|Y(X = x|Y = y)pY(y)dy

which in case of a discrete label space (y ∈ ΩY = {0, · · · ,K− 1}) becomes

pX(x) =
∑
y∈ΩY

PY(Y = y)pX|Y(X = x|Y = y) =

K−1∑
k=0

πkpk(x)

which is the typical mixture model with class-conditional density pk and mixture weight πk.

3 Gaussian model for class-conditional densities

One natural model for the class density (given label y) is the Gaussian model. The Gaussian distribution

N(x|µ,Σ) =
1

(2π)D/2|Σ|1/2
exp−

1
2 (x−µ)

TΣ−1(x−µ)

considers a main prototype µ and a likelihood that decreases exponentially with the Malahanobis distance (shaped by
Σ) from µ. The Gaussian model can therefore be characterized by its 2 �rst centered moments µ and Σ, others being
zero.

The estimation of the class k parameters follows MLE classical estimates under Maximum Likelihood for Gaussian
models(a). Following MLE, the class mean µk can be computed as the empirical mean of the class data. The covariance
matrix Σk can also be computed as MLE estimate. In other words,

Nk =

N∑
i=1

[yi = k ?] µk =
1

Nk

∑
i:yi=k

xi Σk =
1

Nk

∑
i:yi=k

(xi − µk)(xi − µk)
T πk =

Nk

N
(1)

The relationship between Gaussian models and log likelihood(a) creates a direct link between probabilistic discrimina-
tion and its geometry.

3.1 Geometry of Gaussian models

Bayes classi�er is a maximum likelihood classi�er (De�nition 2): it allocates the label y with highest likelihood to
data x. Classes (of labels y) will therefore compete over ΩX for label allocation. As it turns out, the geometry of the
separating set can be studied in the binary case (K = 2) as follows.

(a)Maximum Likelihood Estimate (MLE) and the Gaussian model
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Proposition 1. Given y0,y1 ∈ ΩY and p(X = x|Y = yk) = N(x|µk,Σk) (k = 0, 1) then the separating set between
class y0 and y1

� is linear if Σ0 = Σ1 (homoscedasticity)

� is quadratic otherwise (heteroscedasticity)

Class populations, as class priors (P(Y = k)) guide the location of the separating set with respect to class means.

Proof. TBC. See proof at (b). �

4 Discriminant Analysis

From the above, e�ective classi�ers may be constructed and learned, based on an empirical estimation of their pa-
rameters [3]. In a discrete supervised classi�cation setup, given X × Y = {(xi,yi)}

N
i=1 where xi ∈ ΩX ⊆ RD and

yi ∈ Y = {0, · · · ,K− 1} ⊂ ΩY we seek to train a classi�er

φθ : ΩX → Y

x 7→ φθ(x) = y
where φθ ∈ F and F is a family of functions parameterized by θ

Note that classi�er φθ maps data to a �nite discrete set of labels Y although the above theory is deployed for continuous
labels (y ∈ ΩY ⊆ R) and is therefore also �t for a regression setup.

4.1 Binary case

Assume K = 2, we use Bayes classi�cation theory to train a classi�er discriminating 2 classes, each having a Gaussian
model:

p(X = x|Y = 0) = N(x|µ0,Σ0) and p(X = x|Y = 1) = N(x|µ1,Σ1)

Recall that
P(Y = k) = πk k ∈ {0, 1}

Bayes classi�cation therefore leads to check whether (De�nition 2)

P(Y = 0)p(X = x|Y = 0) > P(Y = 1)p(X = x|Y = 1) i.e π0N(x|µ0,Σ0) > π1N(x|µ1,Σ1)

which can also be quali�ed using the log odd ratio:

log
P(Y = 0)p(X = x|Y = 0)

P(Y = 1)p(X = x|Y = 1)
> 0 i.e log

π0N(x|µ0,Σ0)

π1N(x|µ1,Σ1)
> 0

4.1.1 Linear Discriminant Analysis: LDA

Here, LDA consists in estimating separate means µ0 and µ1 and a unique covariance matrix Σ for all classes. While the
mean and mixture weight estimation follows equation (1), the shared covariance matrix is estimated as the weighted
average of individual class covariance matrices:

Σ =
1

N
(N0Σ0 +N1Σ1) (2)

As mentioned above, classes with Gaussian conditional model and equal covariance matrices Σ are separated by a
linear set (hyperplane)(b).

It is easy to show that in the binary case, the separating hyperplane is orthogonal to the line joining the 2 means
(µ0,µ1)

(b), located closer to the largest class k ∈ {0, 1} proportionally to πk.

4.1.2 Quadratic Discriminant Analysis: QDA

Again as shown from the geometry of Gaussian models, Gaussian class-conditional densities with individual covariance
matrices Σk show quadratic separating sets. Here, the estimation again follows MLE for µk and preserves individual
covariance matrices Σk.

Again, in the binary case, one can show that the separating set is �bent� around the mean of smallest covariance
norm(b) and �attracted� by the most populated class according to πk.

(b)Geometry of Gaussian models
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4.2 General case

In the general case of K > 2, equations (1) remain valid but there is no simple interpretation of the geometry of class
competition. For multiclass LDA, equation (2) becomes

Σ =

K−1∑
k=0

Nk

N
Σk

5 Extension: Fisher criterion

The above technique emphasizes class separation. This is visible in the binary case where the separating hyperplane
is orthogonal to the line joining the two means. This would be called the between criterion in Fisher discrimination
theory [1]. This criterion is mirrored by the within criterion, using the direction of minimal variance within the class
as separating criterion. Fisher criterion proposes a trade-o� between these two competing notions

class separation = argmax
direction

between criterion

within criterion
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