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Abstract:

L'algorithme K-NN (K nearest neighbors) est un algorithme fondamental d’apprentissage supervisé. Bien
que cet algorithme soit trés fort théoriquement, il échoue systématiquement en hautes dimensions. Ce
rapport a pour but de démontrer rigoureusement et empiriquement comment la concentration des dis-
tances dans des espaces de grandes dimensions invalide le principe fondamental du K-NN : I'existence de
voisins réellement significatifs. Nos expériences menées sur des données artificielles et réelles affirment
que la réduction des dimensions est indispensable pour pouvoir utiliser K-NN dans des applications réelles.
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0.1 Le K-NN: simplicité et paradoxe

K-NN est un algorithme utilisé principalement pour résoudre les problémes de classification. On démarre de
I'hypothése que la distribution des labels préserve une forme de continuité, ceci se traduit par I'hypothése que
des données « proches » possédent la méme classification ou du moins auront presque la méme distribution de
probabilités a posteriori sur leurs classes respectives. La méthodologie du k-NN nécessite de donner un sens précis
a la notion de "proximité". Pour cela, on introduit une mesure de distance (métrique) dans I'espace des features.
Cette exigence implique que les données d’entrée soient numériques, représentées typiquement comme des vecteurs
dans RY, ot chaque dimension correspond a un attribut (feature) spécifique. Pour estimer la classification chaque
nouvelle entrée, I'algorithme effectue exactement 3 étapes :

e Calculer la distance entre le nouveau point et les points d'apprentissage (training set).
e Trier ces distances et obtenir les classes des points correspondant aux k plus petites distances.
e | a classe affectée au nouveau point est la classe majoritaire de k points repérés avant.

Comme tout algorithme qui se base sur le calcul des distances et qui traite les attribus comme des coordonnées,
la normalisation joue un rdle crucial. Sans normalisation, les attributs ayant des grandes échelles numériques
domineraient indiiment les calculs de distances, et par conséquent biaiseront les prédictions. Des techniques comme
standardisation (centrage-réduction) permettront d'attribuer un poids équitable a chaque attribut. Le paradoxe
concernant cet algorithme réside dans sa simplicité : I'algorithme est trés facile et repose sur des résultats théoriques
remarquables. Notamment, le théoréme de Cover et Hart (1967) [1] qui dit que I'erreur de cet algorithme est au pire
deux fois I'erreur d'un classifieur optimal de Bayes. Pourtant, cette performance théorique entre en contradiction
avec ses limitations pratiques, particulierement en haute dimensionnalité, ot la notion méme de "voisinage" perd
son sens.

Problématique: performance théorique vs dégradation pratique

La théorie développée par Cover et Hart (1967) assure le bon fonctionnement du 1-NN, mais en pratique on remar-
que un point de rupture critique quand la dimension de I'espace des attributs dépasse quelques dizaines ; |'existence
des voisins proches (qui est I'hypothése principale motivant I'algorithme du K-NN) s’effondre complétement a cause
des conséquences d'un phénomeéne de I'espace qui émerge quand sa dimension devient trés grande (Malédiction
de la dimensionalité). Ce phénomene géométrique contre intuitif transforme la structure de I'espace comme on le

peut imaginer :

e Concentration des distances : Toutes les distances entre les points deux a deux convergent vers une valeur

commune
e Sparsité des données : Les points deviennent équidistants, quelle que soit leur répartition originale
e Perte de signification : La notion méme de "proximité" perd son sens discriminatif

A partir de ce qu’on a annoncé précédemment, plusieurs questions se posent : « Si notre théorie est bien fondée
et on sait que le classifieur 1-NN ne peut pas faire deux fois pire que le classifieur de Bayes, alors comment la
malédiction de la dimensionalité invalide I'algorithme du 1-NN 7 Qu’en est-il pour K-NN 7 Quel est I'écart entre
la performance attendue théoriquement et la performance observée empiriquement ? et a quel point cet écart
devient-il critique ? Dans ce qui suit, nous développerons ces questions d’'une maniére rigoureuse et nous donnons

aussi les résultats empiriques qui supporteront notre analyse théorique.
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Démarche et méthodologie

Notre démarche dans ce rapport est biface combinant analyse théorique et validation empirique systématique:

e Analyse théorique : Nous donnons les fondements mathématiques qui font de I'algorithme K-NN un classi-
fieur avec une erreur raisonnable. Nous discuterons aussi le phénomeéne de la malédiction de la dimensionalité
et ses conséquences citées avant. Enfin, on fait le lien entre K-NN et malédiction de I'espace pour répondre
a la question « comment la malédiction de |'espace invalide le K-NN 7 ». L'analyse présentera aussi des

résultats intermédiaires et auxiliaires qui nous permettront de bien comprendre notre probléme.

e Analyse empirique : Nous testons notre algorithme sur des données réelles et artificielles dans des espaces
de grandes et petites dimensions pour voir comment la performance du K-NN (et 1-NN) se dégrade a cause
de la dimensionalité. Nous prendrons également des données en grandes dimensions et appliquerons une
réduction de dimension (PCA principalement) pour voir comment K-NN se comportera dans les deux cas.
Nous mettons en relief aussi le phénoméne de la concentration des distances quand la dimension de |'espace

de données devient trés grande.

Cette méthodologie rigoureuse nous permettra de répondre de maniére exhaustive a nos questions de recherche et

d'établir un diagnostic précis des conditions d’application du k-NN.

Table des notations

Symbole  Signification

d Dimension de |'espace des données
n Nombre de points dans le jeu d'entrainement
k Nombre de voisins dans K-NN
M Nombre total de classes
X, x Variable aléatoire / point de données
Y,y Variable aléatoire / classe
R* Erreur du classifieur de Bayes
Rnn Erreur du classifieur NN

Renn Erreur du classifieur K-NN
7i(x) Probabilité a posteriori que x appartienne a la classe /
Dinin Distance minimale entre un point requéte et les points d’entrainement
Dimax Distance maximale entre un point requéte et les points d’'entrainement
L(-, ") Fonction de perte 0-1

Q Espace probabilisé
5x(0) Sphére de rayon § centrée en x




Analyse théorique
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Analyse Théorique

L’algorithme NN:

Dans cette section, nous traiterons principalement I'algorithme NN comme un cas particulier de I'algorithme K-NN
(quand K =1). Nous nous intéresserons a reprendre et expliquer le travail fait par les deux chercheurs T.Cover et

P.Hart dans leur article « Nearest neighbor pattern classification » [1].

1.1 Théoréme de Bayes:

Pour pouvoir parler de la précision de toute algorithme de classification (K-NN) en particulier, nous devons absol-
ument avoir une référence d'un classifieur parfait et nous mesurons cette précision toujours par rapport a cette
référence, et notre but sera toujours de s'approcher du parfait le maximum possible. Le classifieur de Bayes
représente I'idéal théorique en classification supervisée. Contrairement aux algorithmes pratiques comme le k-NN,
il s'agit d'un concept théorique qui suppose une connaissance parfaite des distributions sous-jacentes des données.
Nous ne pouvons pas parler du classifieur de Bayes sans donner des éléments de la théorie de Bayes. Nous énoncons
quelques définitions ainsi que le théoréme de Bayes avec sa preuve. Ensuite nous nous basons sur ce théoréme

pour concevoir notre classifieur parfait.

Definition:

Soit (2, F, P) un espace probabilisé. Une famille (B;);e; C F, I fini ou dénombrable, est une partition de Q si:
eVijel:i#j = BNB =0

o U, Bi=Q

Le théoréme suivant est simple, mais il s'agit de I'un des théorémes les plus fondamentaux dans la théorie de

probabilité:

Théoréme:
Soit (€2, F, P) un espace probabilisé. (B;);e/ est une partition de 2 telle que P(B;) > 0 pour tout i € / et soit
AeF:

e (Loi de probabilité totale): P(A) = > .., P(A|B;)P(B)).

e P(A|B)P(Bi
e (Formule de Bayes): Si P(A) > 0, P(B,|A) = %

Preuve du théoréme:

e P(A) =P(QNA)=P((U, B)NA) =PU;c,(BiNA) = ic, P(BiNA) = 3, P(AIB))P(B;)

_PBOA) __ P(ANB)  _ _ PAIB)P(B)
* P(BilA) = =5 = s paBPB) = 5., P(AIB)P(E)

Dans la terminologie statistique, P(B;) est la probabilité a priori de B; et P(B;|A) la probabilité a posteriori de
B; (sachant A). La formule de Bayes donne donc un moyen de transformer le probabilités a priori en probabilités a
posteriori. Cette idée jouera un role essentiel dans le contexte de la classification sachant les classes des données

et les points qui sont déja classifiés.
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1.2 Classifieur de Bayes:

Comment le théoréme de bayes nous servira a concevoir notre classifieur parfait ? Nous répondons a cette question
dans cette section.

On considére un data set D = {(x1, 1), .... (o, ¥u)} avec x1,xo, ..., x, € R? tel que d est la dimension de nos
données d'entrée, et y1, Vo, ...,¥n € C tel que C = {c1, &, ..., cm} I'ensemble de nos classes. Notre ensemble de
donnée est issu d'une distribution inconnue P(X,Y) et les couples de notre dataset sont choisis indépendamment

entre eux. Donc:
PD)=P(X=x,Y=y1)N(X=xY=pn)N...0X=x,Y =y,)) =[], P(X=x,Y = y).

Dans un contexte pratique, on estime cette distribution. Dans notre contexte, nous travaillons avec le modéle
théorique, nous ne cherchons pas a implémenter le Naive Bayes classifier, nous le considérons comme une référence
parfaite pour tout classifieur supervisé. Alors, nous supposons la connaissance des distributions sous-jacentes des
données.

Le classifieur de Bayes est dit naif car il repose sur une hypothése assez forte. Bien que cette hypothése n'est pas
toujours vérifiée, le classifieur donne des résultats pratiquement raisonnables lorsque I'estimation de la distribution
P(X,Y) reste proche de la vraie distribution. Cette hypothése suppose que si on prend un point d'entrée x =
(x[1], ..., x[d]), les cordonnées de x, i.e, "the features" sont indépendants conditionnellement, si on spécifie la

classe a priori, les attributs sont indépendants, alors:

P(xly) = P((x[1]. x[2], ... x[d])ly) =TT, P(xily)

L'idée du classifieur est de maximiser P(c|x). L'événement (Y = c|X = x) signifie que la classe est ¢ sachant

qu'on a le point d'entrée x, alors la classification h prédite par le classifieur est :

h =argmaxP(c|x . ” "
9 ceC ( | ) classifieur Naive Bayes (caractéristiques independantes
P(X|C)P(C) et Gaussiennes) est un cas particulier qui simplifie
= arg max I’estimation des densités a posteriori des classes mais qui
ceC P(x) n’est pas nécessaire pour la suite.
=arg Teacx P(x|c)P(c) On rappelle donc la différence entre 'optimalité du

classifieur de Bayes (connaissance abstraite des

d distributions) et le classifieur Naive Bayes (modele
= arg Teacx H P(xi|c)P(c) simplifié empirigue pour ces distributions)
i=1
d
= argmaxlo P(xi|c)P(c
gmaxiog([] PexIe)P()
=
d

arg Teag[; log(P(xi|c)) + log(P(c)]

Donc, théoriquement nous ne pouvons pas faire mieux que le classifieur naif de Bayes, car ce dernier nécessite les
conditions parfaites pour la classification et tout autre classifieur pratique aura moins d’informations, en particulier
la distribution exacte P(X,Y).

Le modele théorique qu’on a présenté a joué le role de la référence dans I'article de Cover et Hart. Nous nous

intéressons a I'efficacité théorique de cet algorithme par rapport au classifieur naif de Bayes.

Note de supervision: On note ici que I’hypothese du
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1.3 Erreur de I'algorithme 1-NN pour la classification binaire (M=1):

Soit x un point issu d'une variable aléatoire X qu’on veut classifier a I'aide de notre algorithme NN. On suppose
que x, est le plus proche voisin de x avec une classe yx, on note y la vraie classe de x issu de la variable aléatoire
Y. On considére les variables aléatoires engendrant le dataset D: (X1, Y1), (X2, Y2), ..., (Xp, Ya),0n suppose que ces
variables aléatoires sont indépendants et identiquement distribuées.

On définit I'erreur de classification ainsi : Ryn(n) = E[L(Y,Yk)] avec L une fonction décrivant "the loss" la
pénalisation de I'erreur et n désignant le nombre de points de notre dataset. Ryy = limy_oo Ryn(n) est 'erreur
quand le cardinal du training set (D) tend vers l'infini. On note aussi R* I'erreur du classifieur de Bayes parfait.
La fonction "loss" L que nous considérons est : L(h(X),Y) = L{nx)zy} avec h le classifieur 1-NN est Y la vraie

classe du point donné par X. Nous énoncons le théoréme essentiel qui valide le classifieur NN.

Théoréme: Soit X un espace métrique séparable et x € X est un point qu’on veut classifier.
fi et f> les densités de probabilité des distributions des classes 1 et 2 respectivement telles que: f; et f> sont
continues en x ou bien fi(x) # 0 et f>(x) # 0.

Alors, I'erreur R de I'algorithme NN a M=2 classes est borné par :
R* < Ryn < 2R*(1 — R*)
Avant démontrer ce théoréme, nous aurons besoin d'un lemme:

Lemme:(Convergence du plus proche voisin)

Soit x et X1, X0, ... des variables aléatoires indépendant et identiquement distribués qui prennent valeurs dans
un espace métrique séparable X.

On note xx € {x1, X2, ...} le voisin le plus proche de x. Alors, n — co = xx — x avec une probabilité égale
a 1. Autrement dit, quand la taille de notre dataset tend vers I'infini, le voisin le plus proche de x devient

arbitrairement proche a x lui méme.

Preuve du lemme:
Nous définissons Sx(0) = {y € X : d(x,y) < 0} la sphére centré en x de rayon §.
Premier cas : soit x un bon point de X, c'est & dire que pour tout §, la probabilité qu'un élément du dataset se
trouve dans S,(§) n'est pas nulle, on note : P(S4(8)) > 0.
Alors la probabilité que tous les points soient en dehors de S,(8) pour un § donnéest : P = (1 —P(5,(5)))" — 0
quand le nombre de points n de notre dataset tend vers I'infini. Donc, plus de points dans notre dataset plus qu'on
force que le plus proche voisin soit arbitrairement proche de x.
Deuxiéme cas : on définit I'ensemble N = {x € X : 3r, > 0: P(Sx(rx)) = 0} qui décrit les points isolés de notre
distribution; si x appartient a N cela veut dire que x posséde une sphére dans laquelle les points de notre dataset
ne peuvent pas se trouvrer.
Soit x € N, par définition de la séparabilité de X, il existe un sous ensemble dénombrable A qui est dense dans X,
alors : ¥x € N :3a, € A: ax € 54(%), donc, il existe une sphere S, (%) C Sx(rx),
alors P(S,, (%)) < P(Sx(r)) = 0, d'ou P(S,.(%)) = 0.
Ona N C Uy Sa(5) avec Vx € N: P(S,. (%)) =0, alors : P(N) = 0.

Synthése de la preuve: le point x est soit un bon point, c'est a dire il n'appartient pas & N alors, on déduit

que le plus proche voisin est arbitrairement proche. Soit x est dans N avec probabilité 0.
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Preuve du théoréme :
Soit x € X un point qu’'on veut classifier a I'aide du 1-NN,y sa vraie classe et x’ son plus proche voisin avec y’ la
classe de ce dernier.
On définit 1 = P(y = c1|X = x) la probabilité a priori de la classe ¢; et P(y = |X = x) = 1 — fj(x) est la
probabilité que x soit dans la classe ¢, c'est a dire que y = .
On définit e(x, x") := P(L(y,y’) = 1|x,x") I'erreur conditionnelle de la classification de x comme la probabilité
d’avoir une erreur en considérant x et son plus proche voisin x’.
Ona:

e(x,x") =P(L(y,y") = 1|x,x)
=Ply=ca.y=o|x,.xX)+Ply=c,y =alxx)
=P(y = a|x)P(y = o|x') + P(y = o|x)P(y = c1|x’)

=A0) (1 = A(x)) + (1 = A())AX)

Puisque x’ est le plus proche voisin alors par le lemme: x — x’ quand le nombre de points de notre dataset est trés
grand. Les densités f1, f> sont continues au point x donc 7 I'est aussi. Donc : x = x' = 7j(x) = A(x').

Donc €(x, x") = 27(x)(1 — 7(x)) quand le nombre n de données tend vers I'infini.

Si €*(x) est 'erreur de classification pour le classifieur de Bayes.

Alors par symétrie :

enn(x) = 201 (x)(1 — M (x))
=2¢"(x)(1 —€"(x))

Nous venons de démontrer que si on a un nombre infini de points dans notre dataset, le classifieur NN prédit la
classe d'un nouveau point a erreur €*(x)(1 — €*(x)) avec €*(x) I"erreur faite si on classifie ce méme point x en
utilisant le classifieur de Bayes.

Pour I'erreur globale:

Ryn = Iirr7n Ele(x, x")]
= E[27(x)(1 = 7(x))]
— ERe()(1 — ()]
= 2E[e"(x)] — 2E[(¢"(x))?]
< 2E[e*(x)] — 2(E[e*(x)])? (E[X?] > (E[X])? Cauchy-Schwartz)
=2R* —2(R*)? =2R*(1 - R*)

Pour I'autre coté de I'inégalité, on a :

Rnn = E[2€(x)(1 — €"(x))]
= E[e"(x) + €"(x)(1 — 2¢*(x))]
= E[¢" ()] + E[e"(x)(1 — 2¢"(x))]
= R* + E[e"(x)(1 — 2¢*(x))] > R*

Maintenant on traite le cas ot on a plusieurs classes (M > 2):
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Théoréme:(Théoréme d’'extension)

Soit X un espace métrique séparable et x € X un point qu'on veut classifier.

fi,f, ..., f;y les densités de probabilité des distributions des classes 1,2,.., M respectivement telles que:
fi. f>, ..., fm sont continues en x ou bien fi(x) #0 Vi € [[1, M]]

Alors, I'erreur Ryn de I'algorithme NN a M classes est borné par :

R* < Ryny < R*(2 — i< R¥)

Preuve du théoréme d’extension:
On travaille avec les méme données et on généralise les notations et définitions de la preuve précédente.

On a x — x’ avec probabilité 1. Alors, 7j1(x) — 71(x’) et f2(x) — 72(x’) aussi avec probabilité 1. Donc:

€(x,x") =P[L(y.y") = 1|x,x]]
=P[y # y'|x,X]

M
= Zﬁ,(x)(l —ni(x)) (x’ ne doit pas étre dans la méme classe que x)

M
- Zﬁr(X’ 7
i=1
Pour un classifieur de Bayes, si on note : maxcqn, py{7i(x)} = fk(x) alors, I'erreur de classification est :

€' (x) =1— max {Ni(x)} =1—7M(x)

iel[1,M]]
On a
-1) Z (x))? > [Z Hi(x))?] (M > 1 et on a utilisé Cauchy Scwartz pour la somme)
I#] i#]

Donc:

M

(M=1)Y (W(x)* = [1 = 1)) = (€"(x))?

i#

Alors:

M
(M=1)> (7:(x))* > € (x) + (M = 1)(75(x))* = (€ (x))* + (M = 1)(1 — €"(x))?

i=1

M
= > (007 =

(;(X))Q +(1—€*(X))2

-1

(;(f)f +1-26() + (€ (x))?
(M
M —

= 1—enn(x) 2

— eyn(x) < 26" (x) —

- ()
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On fait la méme transition qu'on a faite pour le théoréme précédent :

M
< * *\ 2
Run < 2R" — = (R")

Nous avons donné les bases théoriques qui valident |'algorithme 1-NN. Nous avons conclu que notre algorithme
simple est au pire deux fois moins performant le classifieur parfait dans le cas de deux classes seulement et |'erreur
de ce dernier devient plus petite que 2R* si le nombre de classes est supérieur a 2.

La prochaine étape est de faire le lien avec le K-NN, quelle est la performance théorique atteinte par notre classifieur

si nous augmentons le nombre de voisins considérés ?

Le classifieur K-NN

Le classifieur K-NN ou I'algorithme K-NN suit le méme principe que I'algorithme NN, en fait le NN est un cas
particulier de I'algorithme du K-NN, car dans le premier algorithme nous considérons spécifiquement le plus proche
voisin, or dans le K-NN nous travaillons avec les k voisins les plus proches, choisir k impair empéche le cas d'égalité.
k est appelé un hyperparamétre de I'algorithme, le choix de ce dernier affecte bien la performance de I'algorithme,
il y a des méthodes et des conseils pour le choix de ce dernier mais il n'y a pas une régle a suivre, nous discuterons

I'impact du choix de k aussi dans cette section.

2.1 Bias-Variance Tradeoff:

Le compromis Biais Variance est un phénomeéne qui se produit quand on essaie d'entrainer un estimateur quelconque
(Le classifieur K-NN dans notre cas qui estime la classe du nouveau point qu’on souhaite classifier). Nous donnons
dans cette section une justification mathématique ainsi que des exemples réels de ce phénomeéne.

Nous considérons dans cette partie le classifieur K-NN comme un ERM (Empirical Risk Minimization predictor),

c'est a dire un estimateur qui essaie toujours de minimiser I'erreur empirique. Pour ce faire, nous définissons :

X :I'espace de données Y = [[1, M]] : I'espace des labels S, = {(x1,y1).,...,(xn, ¥n)}: training set
La classe des hypothéses du KNN est : Hyxyy = {h: X = Y | h(x) = classe majoritaire de Ni(x)}

avec : Ni(x) : les k plus proches voisins de x dans S,

Le classifieur K-NN minimize I'erreur 0-1 empiriquement, alors on cherche:

1 n
h, =arg min — 1
KNN 9 L L ; {h(xi)#yi}

Et puisque les voisins sont tous traités de maniére égale, alors:

L PN . . ) . . 1
I'estimation de la probabilité a posteriori de la classe i est donnée par : P(Y = i|X = x) = %i(x) = P Z Lyy=i)
JENK(x)
La question du choix entre traiter les voisins d'une maniére égale ou utiliser des coefficients dont la somme est 1
est toute a fait logique, mais nous ne la couvrons pas dans ce travail.

Pour traiter la question du compromis, nous prenons une hypotheése hs, et nous décomposons notre Loss en deux
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parties:
L(hs,) = €app + €est  Where : €5pp = Ir7n|7r{1 L(h) (approximation error), €est = L(hs,) — €app (estimation error)
S

e The approximation error: Cette quantité est égale au minimum d'erreur possible sur notre classe H. |l
s'agit de I'erreur engendrée par la restriction de nos estimateurs sur une classe particuliére d'estimateurs.
Cette erreur ne dépend pas de la taille du training set. Dans notre cas, nous pouvons considérer notre
erreur d’approximation comme la différence entre le k optimal et le k qu'on a choisi, ajouter d'autres points

n'influencera pas cette erreur car elle est liée a la nature de la distribution des points et non a la taille du set.

e Estimation Error: Cette quantité représente la différence entre I'approximation de I'erreur et I'erreur atteint
par I'ERM. L'erreur d’estimation est le résultat de la différence entre la vraie erreur et |'erreur estimé car en
travaillant avec un dataset fini, nous pouvons qu'estimer empiriquement la vraie erreur de notre estimateur.

Cette erreur dépend de la taille de notre échantillon.

Notre objectif est de minimiser I'erreur L(hs,). Une classe d’hypothéses H trés riche (par exemple un k trés
petit dans le cas du K-NN) permet de réduire |'erreur d’approximation, mais augmente |'erreur d'estimation, car
le modele dépend fortement des données, ce qui conduit a un sur-apprentissage (overfitting). A I'inverse, une
classe d'hypothéses trop restreinte (un k trés grand) réduit I'erreur d'estimation au prix d'une augmentation de
I'erreur d'approximation, entrainant un sous-apprentissage (underfitting). Ce compromis entre sur-apprentissage

et sous-apprentissage est appelé compromis biais—variance.

2.2 Bornes théoriques pour KNN:

La discussion précédente était dans le cadre fini, c'est a dire nous travaillons avec des datasets de taille finie (le cas
réelle), dans cette section nous s'intéressons a quelques résultats théoriques intéressants spécifique pour la classi-
fication binaire (quand on a deux classes). Nous considérons aussi que k est impaire pour éviter les cas d'églité (la
théorie 1a dessus n'est pas discuté dans ce travail). Nous considérons n(X) la probabilité que X (valeur aléatoire

qui décrit I'entrée qu’on veut classifier) soit dans la premiére classe, n(X) = P(Y = 1|X).

Théoréeme:
Si on définit R* I'erreur du classifieur parfait de Bayes et Lxny I'erreur de I'algorithme K-NN.

Alors,

R* <+ < Roky1 < Rok—1 <+ < Rayw < Ryw £ 2R*
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Preuve du théoréme:

On note : Rxnn = E[a(n(X))] I'erreur de notre classifieur KNN, avec :

Vp € [0,1] : ax(p) = P(erreur K-NN | n(X) = p)
On introduit aussi les variables aléatoires X1, X, ..., X, décrivant les points de notre dataset et Y7, Y5, ..., Y, leurs
classes respectives. On note X(1), X(2), ..., X(k) les K plus proches voisins de X et Y(1), ¥(2), ..., ¥(k) leurs classes
respectives.
On a pour tout p € [0,1] :

K K
ak(p) = P(ZY(”(X) > g Y =0+PO Y <5, Y=1)

i=1

X NI X

K
= (1-p)P(Bin(K,p) > 5) + p P(Bin(K, p) < — (Bin désigne I'expérience binomiale)

2
= (1-p) P(Bin(K,p) > %)+ p (1~ P(Bin(K,p) > 5)

= p+(1—2p) P(Bin(K, p) > g) (Cette écriture est pratique si p < %)
= (1) + 20— 1) + (L 29)P(Bin(K.p) > &

= (1- )+ (20— D[L—P(Bin(K,p) < )

= (1) + (20— DP(Bin(K, 1~ p) > 5)
Donc:
i (p) = min{p, 1~ p} +[20 ~ 1| P(Bin(K, min{p, 1~ p}) > %) Vp<[0,1]

On observe clairement que : ax(p) = ax(l—p) Vpe|[0,1].
Nous avons déja montré que Ryy < R*, et on sait bien que le classifieur de Bayes est parfait donc R* sert
comme une borne inférieur de toutes les erreurs qu'on manipule. Donc nous avons besoin juste de montrer que :
Rok+1 < Rok—1.

Pour cela on a:

1 . -
aok+1(p) < ask—1(p) (On suppose que p< > sinon on choisit 1-p)

K+1 2K — 1
; ) <p+(1-2p) P(Bin(2K —1,p) > =

1 1
& P(Bin(2K+1,p) > K+ 5) <P(Bin(2K —-1,p) > K — 5)

)

2
< p+(1—-2p)P(Bin(2K +1,p) >

La derniére ligne des équivalence est vraie pour la simple raison suivante (interprétation combinatoire): Si p < %

atteindre plus que K + % succes avec 2K + 1 essais, est peu probable que atteindre K — % succes avec 2K — 1

essais.

Donc, en passant aux espérances:
Rak+1 = E[aak+1(n(X))] < E[aak-1(n(X))] = Rok-1
Conclusion :

R* <.+ < Roky1 < Rok—1 < - < Rsyw < Run < 2R*
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Malédiction de I'espace

On pourra penser que I'espace a hautes dimensions se comporte a peu prés de la méme facon que I'espace imaginable
(< 4 dimensions), c'est a dire que les régles qui régissent |'espace imaginable ont juste besoin d'une extnesion de

quelques dimensions. En vérité ce n'est pas le cas, et c'est cela qu'on discutera dans cette section.

3.1 Rareté des données (Data sparsity):

Data sparsity est un phénomeéne qui apparait lorsqu’'on traite des données dans des espaces a hautes dimensions.
Il s'agit simplement du fait que lorsque la dimension de I'espace des données croit, il devient difficile de trouver des
échantillons de données (samples) dans I'espace. Formellement, cette idée sera claire.

On se donne un hypercube de I'espace de données Q = [0, 1]9 avec d la dimension de cet espace. On suppose
que I'échantillon de points est tiré uniformément de ce cube. On note / la longueur du plus petit hypercube qui

contient par exemple les 10 plus proches voisins d’'un poit x € Q2 et n le nombre des points d'entrainement.

Figure 1: Illustration de I'hypercube

Puisque le volume est égal a 1 et les points sont uniformément distribués, on peut faire I'approximation suivante

nlf~k = 9~

SIx

k
— /= (;)l/d

Donc, la conclusion immédiate pour notre cas est: Si la dimension d est trés grande alors, il nous faut un nombre
immense de points d'entrainement pour avoir / raisonnable. Exemple: Si on fixe / = 0.1 alors on aura besoin de
n= ,% = k 109. Notons que le nombre de points d’entrainement requis croit exponentiellement avec la dimension.
C’est I'une des raisons majeures pour laquelle le classifieur KNN devient inefficace dans les grandes dimensions.
Tout simplement, il n'y a pas assez de proches voisins pour dire que les points proches ont les méme caractéristiques.

La notion de proche devient rare!
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3.2 Concentration des distances:

Un autre phénoméne qui apparait dans I'espace quand sa dimension devient considérablement grande est : La
concentration des distances. Il s'agit du fait que la distance entre les paires de points de I'espace converge vers
la méme valeur, en particulier la distance au plus proche voisin devient égale a la distance au plus loin, ce qui rend
les algorithmes reposant sur la distances inefficaces.

La distance traité dans ce rapport est en particulier La distance de Minkowski.

On commence par quelque définitions avant d’énoncer le théoréme qui illustre la concentration des distances sous

certaines conditions théoriques.
e m : parameétre de la dimension € N
® Fyatay, Fdatay. ... - densités des distributions des points d'entrées a chaque dimension m
Fqueryr Fquerys. ... © densités de distributions des points a classifier
e n : Nombre de points d'entrainement.
o VYm: Py, Pna, ..., Pmn i les points d'entrainement qui sont tous indépendants et suivent la méme loi Py,
o Qm ~ Fquery, 1 un point a classifier tiré de la distribution de Fquery,,
e 0 < p < oo une constante

e d,,: représente la distance. Elle s'agit d'une fonction qui prend un point du domaine de Fgats, €t un point

du domaine de Q,, et donne un nombre positif.

o D' — min{dpn(Pmni, Qm)|1 < i < n}

min
o DU = max{dn(Pmi, Qm)|1 < i < n}

Théoréme:

On garde les définitions d'avant, Si:

. (dm(Pm,lme))p
AV [ (P, @)

]=0
Alors,

Ve>0: lim P[D{™) < (1+¢€)D{M] =1
m—o0
On a choisi Py, 1 car tous les points P, ; suivent la méme distribution P, donc il n'y a pas de différence.
Preuve:

Soit wm = E[(dn(Pm.i, @m))P] (m est indépendant de i pour la méme raison qu'on a dit avant)

Partie 1: Prouver que V;,, —, 1 (Convergence en probabilité)
On a E[V;y] = HPri@nl — 1 donc lim o E[Vin] = 1.

La condition du théoréme nous dit que : lim;,_o Var[V;;] = 0, donc par l'inégalité de Benyamé-Tchebyshev :

Ve>0: lim P[|[V), -1 <€e]=0 = V=, 1
m—o00

10
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Partie 2:
On montre que le résultat de la partie 1 implique bien la conclusion du théoréme.
On considére:

dm(Pm,L Qm) dm('Dm,2y Qm) dm(Pm,nv Qm)

AT

Yo = ( )= (VP VP Vil P)

. Puisque la fonction x — x/P avec p une constante est continue, alors V/-/P —p 1,

et par conséquent Yy, =, (1,1,...,1).

les fonctions min et max sont aussi continues alors on conclut de méme : max(Y;,) —p, max(1,1,...,1) =1 et
min(Ym,) —p min(1,1,...,1) = 1.

Alors:

max(Y;,)

1
9N Tm) -1
min(Yy,) BGET

On note que D'™ = /P min(Y;,) et D\m) = yl/p max(Y;,) Alors:

min

LN |
Dy

D’ou:

(m)
: (my _ Drmax o
lim P[D{ < (1+e)Dyi] = lim P Sim ~l<d=0

min

Dans la pratique, nous observons dans nombreux cas (images et vidéos, textes et NLP,...) que les points d'entrées
sont en distance moyenne entre eux di a la haute dimension de I'espace. C'est a dire la distance relative a la
moyenne des distances ne varie pas autant (~ 0), c'est ce qui rend ce théoréme trées fort (la condition est a peu
prés toujours présente). Donc notre classifieur KNN qui prédit les sorties en se basant sur la comparaison des
m)

distances devient inefficace, comme DY), et Dﬁ:’z deviennent a peu prés les mémes.

11
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Analyse Empirique

Expérience 1: Performance vs Dimension

Dans la premiére expérience, nous illustrons la dégradation de la performance du classifieur KNN quand la dimension
de notre espace d’entrée devient de plus en plus grande.

Les vecteurs sont échantillonés i.i.d et les dimensions sont indépendantes, pour chaque dimension, nous générons
des données artificielles (test set et training set) qui ont des composantes informatives contribuant a I'identification
de la classe des données et d'autres qui sont soit répétées soit sans intérét a la classification (irrelevant). Nous
entrafnons notre classifieur sur le training set, et nous prenons the accuracy score de notre classifieur sur I'ensemble
de validation (testing set).

On obtient la figure suivante: Le phénoméne est trés clair, la dimension représente le nombre de composantes, la

Dégradation de la performance a cause des grandes dimensions

0.9 1

0.8 4

0.7 4

Performance du KNN

0.6 4

0.5

10! 102 10°
Dimensions des données

Figure 2: Expérience 1

plupart des composantes de notre ensemble de données s'agit du bruit (similaire aux cas réels), donc le classifieur
est perturbé, ce qui explique la dégradation de la performance.

13
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Expérience 2: Concentration des distances

Dans cette expérience, nous validons le théoreme qui illustre la concentration des distances quand la dimension
devient plus grande et la variance des distance de leur moyenne est minimale (la condition du théoréme), cette
condition est vraie dans la plupart des cas pratiques.

Comme I'expérience précédente, nous générons des données artificielles (training set et query set), query set s’agit
de I'ensemble des points pour lesquels on considére les voisins, c'est pour ces points-la qu'on trace le rapport
D&”;i/DfnTn) en fonction de la dimension. Cette fois-ci, les donées sont concues de facon telle qu'il y a deux clusters
représentant les deux classes des points.

Nous obtenons le graphique suivant:

Illustration de la concentration des distances

250 4 —--- Ratio=1

2004

-
I
o

Ratio DMAX/DMIN
=
o
S

Dimensions
Figure 3: Expérience 2

La figure illustre bien le probléme de la concentration des distances, I'un des problémes majeurs qui rendent le
KNN inefficace pour tel type de points.

14
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Expérience 3: Data Manifold

Cette expérience illustre le cas ol le classifieur KNN fonctionne trés bien méme si nous nous trouvons dans un
espace a dimension 784 ! |l s’agit du dataset MNIST qui s'agit des nombres de 0 & 9 écrits a la main.

Dans cette expérience nous testons la performance du KNN sur MNIST directement, aprés nous effectuons une
réduction de dimension (En utilisant PCA) et nous reclassifions les points & dimension réduite a I'aide du KNN.
Nous obtenons le graphique suivant:

Evolution of the accuracy of KNN with respect to the number of PCA components

° ° === Accuracy of KNN without PCA
° °
° L4 ° °
L - L] —— ) )

0.8

0.7

Accuracy of KNN
o
Y

4
o

0.4

0.3

0 10 20 30 40 50 60
Number of PCA components

Figure 4: Expérience 3

Ce graphique nous dit que nous pouvons atteindre une grande précision en se contentant juste d'un petit nombre
de composantes au lieu de travailler avec 784, ce qui implique que notre dataset en fait se trouve dans un sous
espace a petite dimension du grand espace de dimensions 784. Cela explique pourquoi le KNN performe trés bien.
N'oublions pas que les données sont bien structuré, c'est a dire les '1" se ressemblent, les '2' se ressemblent, ainsi
de suite. Il y aura évidemment des cas ol le classifieur se trompera, mais en moyenne sa précision est bonne.

Expérience 4: Choix du k

Cette expérience illustre I'impact du choix de I'hyperparamétre k (nombre de voisins a considérer) sur la performance
du classifieur pour les deux ensembles, ensemble d'entrainement et I'ensemble de validation. Nous prenons des point
du dataset MNIST et nous conparons les performances du classifieur sur I'ensemble d'entrainement et I'ensemble
de validation.

On obtient le graphique suivant:

Impact of k on the accuracy over both the training and testing set

1.00 —8— accuracy over the test set
—e— accuracy over the training set

0o 20 40 60 80 100
Number of nearest neighbors (k)

Figure 5: Expérience 4

Le graphique montre clairement que les performances sur les deux ensembles décroissent quand k devient de

15
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plus en plus grand, mais nous observons aussi que I'erreur de I'ensemble de validation devient plus grand que I'erreur
sur I'ensemble d'entrainement.
Le choix du paramétre k impacte directement la performance du classifieur.

16
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Ce projet a permis d'explorer I'algorithme K-NN sous un double angle : théorique et empirique. Théoriquement,
nous avons rappelé les garanties de performance remarquables de K-NN, notamment le résultat fondamental de
Cover et Hart [1] qui borne son erreur & deux fois celle du classifieur de Bayes optimal dans le cas binaire. Ces
fondements théoriques expliquent I'attrait conceptuel de I'algorithme.

Cependant, nos analyses ont révélé le fossé entre théorie et pratique. La malédiction de la dimensionalité
se manifeste par deux phénomeénes critiques : la rareté des données (nécessitant un nombre exponentiel de
points d’entrainement) et la concentration des distances (rendant la notion de voisinage peu discriminante en
haute dimension). Nos expériences empiriques ont validé ces limitations, montrant une dégradation rapide des
performances au-dela de quelques dizaines de dimensions.

Paradoxalement, notre expérience sur MNIST a démontré que K-NN peut exceller méme en dimension nominale
élevée (784) lorsque les données résident sur une variété de faible dimension. Ce résultat clé justifie I'utilisation
de techniques de réduction de dimension comme |I'ACP avant d'appliquer K-NN.

Le choix du parameétre k illustre également le compromis biais-variance inhérent : un k petit favorise la
flexibilité au risque du sur-apprentissage, tandis qu'un k grand favorise la stabilité au risque du sous-apprentissage.

En pratique, le K-NN ne doit pas étre appliqué naivement a des données de haute dimension sans prétraitement.
Il gagne a étre intégré dans des pipelines incluant :

e Réduction de dimension (ACP, t-SNE, UMAP)
e Sélection de caractéristiques pertinentes
e Apprentissage de métriques adaptées

En définitive, le K-NN illustre parfaitement le défi de concilier théorie élégante et contraintes pratiques. Son
extréme simplicité, son interprétabilité et ses fondements théoriques solides en font un algorithme précieux, a
condition d’'étre appliqué avec discernement et dans des conditions appropriées.
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